

MPCH DryRun

Chemie-Kreiselpumpe

mit trockenlaufender Magnetkuppelung

- alle Pumpen der Baureihe mit Norm Anschlußmaßen
- ♦ keine Lager in der Förderflüssigkeit
 - Eignung für feststoffhaltige, gashaltige sowie auch magnetisierbare Förderflüssigkeiten
 - > definierte Lagerlebensdauer
 - hohe Betriebssicherheit
 - > geringe thermische Lagerbelastung
- trockenlaufende, druckentlastete Magnetkupplung
 - verschleißfreier Betrieb der Kupplungsteile
 - > hoher Sicherheitsstandard, da der Spalttopf nur eine geringe Druckbelastung hat
 - hoher Wirkungsgrad, da keine hydraulischen und Wirbelstrom-Verluste in der Kupplung und Lagerung
- ♦ Labyrinth-Wärmebarriere zwischen Produktseite und Lagerung
 - > geringe Oberflächentemperatur des Lagerträgers
 - kein Wärmeübergang auf den Motorflansch

Einsatzgebiete:

Zum Fördern von Flüssigkeiten bei denen keine Leckagen erwünscht sind.

Dies sind in der Regel toxische, aggressive oder wertvolle Flüssigkeiten, die auch feststoff- oder gasbeladen sein können.

Generell ist dieser Pumpentyp auch hervorragend für Einsatzfälle geeignet, bei denen eine hohe Betriebssicherheit und niedrige "Lifecycle" – Kosten erwartet werden.

Bauart:

Horizontale, robuste, dauerhaft trockenlauffähige und magnetgekuppelte Spiralgehäusepumpe mit einstufigem Radiallaufrad.

In der Standardausführung mit geschlossenem oder halboffenem Laufrad für normal verschmutzte Förderflüssigkeiten entsprechen die Anschlussmaße des Pumpengehäuses der DIN EN 22 858. Die weiterhin verfügbare Pumpenausführung mit Kanalrad hat geringfügig abweichende Anschlussmaße.

Auslegung und technische Anforderungen sind entsprechend ISO 5199.

Die Baureihe ist Modular aufgebaut, wobei nur drei Lagerträger für alle Baugrößen verwendet werden. Die Lager- und Dichtungseinheit ist unabhängig vom Förderprodukt einsetzbar.

Das Konzept der trockenlaufenden Magnetkupplung:

Die erste Entwicklung dieser Bauart wurde bereits im Jahre 1997 als magnetgekuppelte Tauchpumpen *MPAT* realisiert. Damals stellte sich die Aufgabe, eine *trockenlaufsichere Pumpe mit der Eignung zur Förderung von Produkten mit höheren Feststoffgehalten* zu entwickeln.

Hieraus resultiert eine Pumpe, deren fettgeschmierte Wälzlagerung und Magnetkupplung in Stickstoffatmosphäre läuft, wobei die Magnetkraftübertragung wirbelstromfrei ausgeführt ist. Der Feststoffkontakt zur Lagerung wird vermieden, indem eine kleine Stickstoffmenge eingeleitet wird. In dieser Ausführung ist die Pumpe trockenlaufsicher und unabhängig von der Art des Fördermediums einsetzbar.

Durch die Entwicklung einer speziellen, vom Sperrgas durchströmten Labyrinthdichtung, die der Lagereinheit vorgelagert ist, konnte das reibungsfreie Dichtungskonzept der oben beschriebenen Vertikalpumpen auf die Horizontalpumpe **MPCH**_{DryRun} übertragen werden.

Das Dichtungskonzept im Einzelnen:

Die Wellenabdichtung besteht aus mehreren Einzelkomponenten, die eine hohe Sicherheit garantieren. Am Laufrad befindliche Rückenschaufeln und Ausgleichsbohrungen senken den Wellenspaltdruck auf nahezu Zulaufdruck, wodurch nur ein geringer Sperrdruck und somit auch eine geringe Sperrgasmenge erforderlich ist. Ein Labyrinth zwischen Laufrad und Wellenlagerung, welches von dem Stickstoff durchströmt wird, übernimmt eine Feststoffseparation und verhindert das Eintreten von Feststoffen in den Bereich vor der Lagerung. Vor der Lagerung befindet sich ein Spezial – Dichtring, der als Sicherheitsabdichtung für den Fall des Stickstoffausfalls dient. Diese Dichtung ist durch ein entsprechendes Flächen – Druck - Gleichgewicht so ausgelegt, dass sie während des Betriebs reibungsfrei arbeitet und nur bei Störungen wie ein Ventil schließt. Die einwandfreie Funktion dieser Dichtung ist am Sperrdruck abzulesen.

Die eigentliche hermetische Abdichtung, der Spalttopf, erfährt somit nur eine geringe Belastung und hat auch im Störfall, bei ausbleibender Stickstoffversorgung, keine Produktberührung.

Betriebsweise der Wellendichtung:

Der Betrieb erfolgt analog zu den gasgesperrten Doppel-Gleitringdichtungen mit einer geringen Sperrgasüberlagerung, Der Sperrgasverbrauch wird entsprechend dem Einsatzfall fest eingestellt und liegt in einem Bereich von 20 – 120 NI / h bei einem Sperrgasdruck von ca. 1,5 bar über Zulaufdruck. Bei einem Zulaufdruck unter Atmoshärendruck kann die Stickstoffmenge entsprechend reduziert werden. Die höchste Sicherheit ergibt eine Überwachung von Sperrgasdruck und Sperrgasmenge. Jede Undichtigkeit im Bereich der Lagerung / Magnetkupplung wird unmittelbar durch den höheren Stickstoffverbrauch am Durchflussmesser angezeigt und kann entsprechend ausgewertet werden. Ein verminderter Sperrdruck signalisiert eine Störung des Sicherheits- Dichtrings und lässt eine gezielte Außerbetriebnahme ohne Gefährdung zu. Standardmäßig kann eine komplett montierte Sperrgasversorgungseinheit mitgeliefert werden.

Temperatur des Lagerträgers:

Die Wärmebarriere zwischen Produkt- und Lagerraum, die durch die von der Förderflüssigkeit getrennten Labyrinthdichtung entsteht, bewirkt einen hohen Temperaturgradienten, so dass die Lagergehäuse-Temperatur niedrig ist. Es erfolgt keine Wärmeübertragung auf den Flansch des Antriebsmotors. Hierdurch ist der Einsatz der Pumpe auch bei heißen Produkten und Schmelzen möglich.

Technische Ausführung / Betriebsdaten:

Die hochgenaue Wälzlagerung dieser Pumpe erreicht eine Lebensdauer von mindestens 32000 h und ist nur alle 3 Jahre zu warten. Die mechanisch leicht vorgespannte Lagerung ermöglicht einen Betrieb ohne jede Flüssigkeitsfüllung, also ohne hydraulisch verursachte Lagerkräfte wobei die Schwinggeschwindigkeiten an den Lagerstellen bei 2900 1/min unter 1,5 mm/s liegen.

Bei der Bungartz **MPCH**DryRun wird trotz hydrodynamischer Druckentlastung des Spalttopfs annähernd der gleiche gute Wirkungsgrad wie bei Standard-Chemie-Normpumpen mit Einzelgleitringdichtung erreicht.

Wirkungsgradvergleich, Baugröße 50 / 250, n = 2900 1/min									
MPCH DryRun	Standard-Chemie-Normpumpe	Standard-Norm-Magnetpumpe							
mit geschlossenem Laufrad	mit geschlossenem Laufrad (Reibung der Dichtung herausgerechnet)	mit geschlossenem Laufrad, Spalttopf aus Hastelloy, Pv ≈ 3,5 KW							
64 %	68 %	58 %							

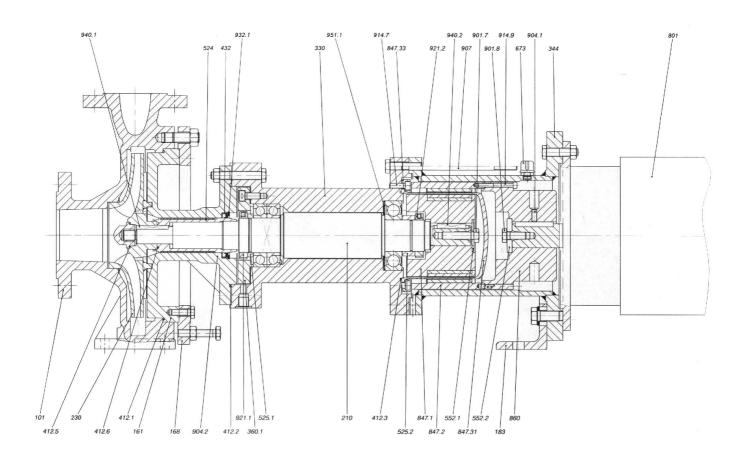
Werkstoffe und Einsatzgrenzen:

MPCH (alle produktberührten Teile):

Werkstoff 1.4408 / 1.4571: 16 bar bis 100°C, 10 bar bis 280 °C

1.4593 / 1.4539 : 25 bar bis 130°C , 16 bar bis 280 °C

Typenschlüssel:



Sonderausführungen K: mit Kanalrad , H: mit Heizmantel O: mit offenem Laufrad
Laufrad - Nenndurchmesser
Nennweite Druckstutzen
Nennweite Saugstutzen

Magnet- Pumpe- Horizontal (standardmäßig mit geschlossenem Laufrad)

<u>Schnittzeichnung</u>: <u>MPCHDryRun</u> mit geschlossenen Schaufeln

Teileverzeichnis (ohne Normschrauben)

Teile Nr.	Benennung
230	Laufrad mit Mutter und Dichtring (412.5)
101	Pumpengehäuse
904.2	Gehäusewand mit Dichtring (412.1, 412.2)
210	Welle mit Passfedern (940.1), (940.2)
321.1	Axiallager
360.1	Lagerdeckel
921.1	Nutmutter mit Hülse (525.1)
321.2	Radiallager mit Federring (951.1)
921.2	Nutmutter mit Hülse (525.2)
524	Wellenschutzbuchse mit Dichtring (412.6)
330	Lagerträger
183	Fuß
344	Motorträger
847.31	Spalttopf mit Überwurfflansch (847.33) und Dichtring (412.3)
847.1	Innenrotor mit Passfeder (940.2), Schraube (901.7), Scheibe (552.1)
847.2	Außenrotor mit Antriebsflansch (860), Schraube (901.8), Scheibe (552.2)

Haupt - Abmessungen:

Mag	la ir	mm

Maße in mm																						
Baugröße	Lager träger	DN1	DN2	ho	h1	h2	h3	а	С	w0	w1	w2	n1	n2	n3	b m1	m2	g1	s1	У	Gi (")	<i>DA</i> (")
25 – 160		40	25	95	132	160	600	80	665	585	320	400	240	190	140	100	70	14	14	100	3/8	16
25 - 200	H	40	25	33	160	180	000	80	665	585	320	400	240	190	140	100	70	14	14	100	3/8	16
32 - 160	i –	50	32		132	160		80	665	585	320	400	240	190	140	100	70	14	14	100	3/8	16
32 - 200	<u> </u>	50	32		160	180		80	665	585	320	400	240	190	140	100	70	14	14	100	3/8	16
32 - 250	i	50	32		180	225		100	780	645	420	400	320	250	190	125	95	16	14	100	3/8	16
40 - 160	ii -	65	40		132	160		80	665	585	320	400	240	190	140	100	70	14	14	100	3/8	16
40 - 200	i –	65	40		160	180		100	685	585	320	400	265	212	165	100	70	14	14	100	3/8	16
40 – 250	1	65	40		180	225		100	780	645	420	500	320	250	190	125	95	16	14	100	3/8	16
40 – 315	II	65	40		200	250		125	805	645	420	500	345	280	215	125	95	18	14	100	3/8	16
50 - 160	ı	80	50		160	180		100	685	585	320	400	265	212	165	100	70	14	14	100	3/8	16
50 – 200	II	80	50		160	200		100	780	645	420	500	265	212	165	100	70	14	14	100	3/8	16
50 - 250	ш	80	50		180	225		125	805	645	420	500	320	250	190	125	95	16	14	100	3/8	16
50 - 315	II	80	50		225	280		125	805	645	420	500	345	280	215	125	95	18	14	100	3/8	16
65 - 160	II	100	65		160	200		100	780	645	420	500	280	212	150	125	95	15	14	100	3/8	16
65 – 200	II	100	65		180	225		100	780	645	420	500	320	250	190	125	95	16	14	140	3/8	16
65 - 250	Ш	100	65		200	250		125	805	645	420	500	360	280	200	160	120	18	18	140	3/8	16
65 - 315	Ш	100	65		225	280		125	1015	890	620	700	400	315	240	160	120	18	18	140	3/8	16
80 - 160	II	125	80		180	225		125	805	645	420	500	320	250	190	125	95	15	14	140	3/8	16
80 - 200	II	125	80		180	250		125	805	645	420	500	345	280	215	125	95	16	14	140	3/8	16
80 - 250	Ш	125	80		225	280		125	1015	890	620	700	400	315	240	160	120	18	18	140	3/8	16
80 - 315	Ш	125	80		250	315		125	1015	890	620	700	400	315	240	160	120	18	18	140	3/8	16
80 - 400	Ш	125	80		280	355		125	1015	890	620	700	435	355	275	160	120	20	18	140	3/8	16
100 - 200	III	125	100		200	280		125	1015	890	620	700	360	280	200	160	120	16	18	140	3/8	16
100 - 250	Ш	125	100		225	280		140	1030	890	620	700	400	315	240	160	120	18	18	140	3/8	16
100 - 315	Ш	125	100		250	315		140	1030	890	620	700	400	315	240	160	120	18	18	140	3/8	16
100 - 400	III	125	100		280	355		140	1030	890	620	700	500	400	300	200	150	20	23	140	3/8	16
125 - 250	Ш	150	125		250	355		140	1030	890	620	700	400	315	240	160	120	18	18	140	3/8	16
125 - 315	Ш	150	125		280	355		140	1030	890	620	700	500	400	300	200	150	20	23	140	3/8	16
125 - 400	Ш	150	125		315	400		140	1030	890	620	700	500	400	300	200	150	20	23	140	3/8	16
150 - 250	Ш	200	150		280	375		160	1050	890	620	700	500	400	300	200	150	20	23	180	3/8	16
150 - 315	III	200	150		315	400		160	1100	910	620	700	550	450	350	200	150	22	23	180	1/2	16
150 - 400	III	200	150		315	450		160	1100	910	620	700	550	450	350	200	150	22	23	180	1/2	16
200 - 315	Ш	250	200		355	450		200	1140	910	620	700	550	450	350	200	150	22	23	180	1/2	16

Achtung: Maßangaben nur zur Vorprojektierung verwenden! Detail - Konstruktion nur mit freigegebener Einzelmaßzeichnung!

Haupt - Abmessungen:

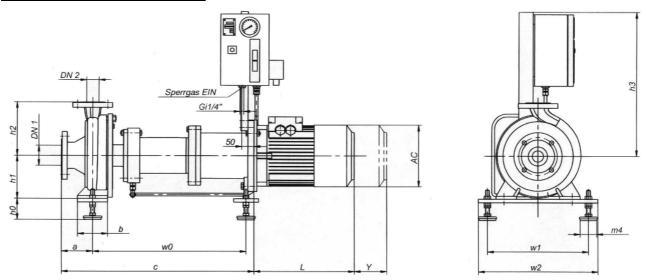


Abb. 1 Standardaufstellung bis zur Motorbaugröße 160 L (für alle Temperaturbereiche)

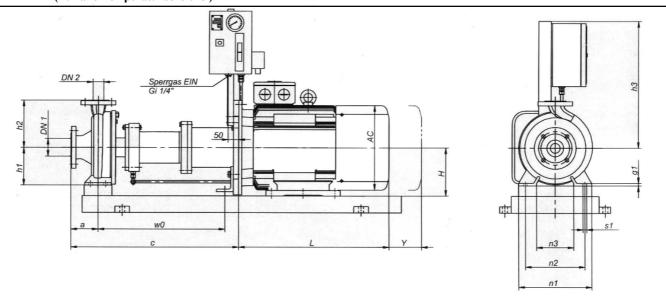


Abb. 2 Standardaufstellung ab Motorbaugröße 160 L (Achtung: nur bis 120°C Produkttemperatur, ab 120°C Aufstellung nach Abb.4)

Motorabmessungen									
Baugröße	AC	L							
132	270	420							
160	320	525							
180	375	610							
200	415	665							
225	470	700							
250	520	800							
280	580	870							
315 S, M	645	1000							

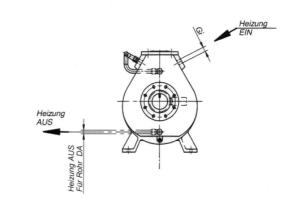
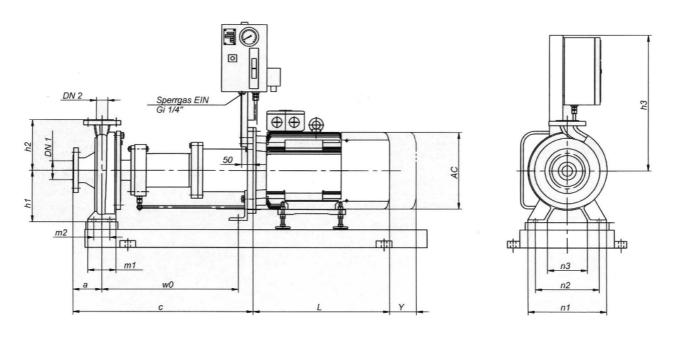
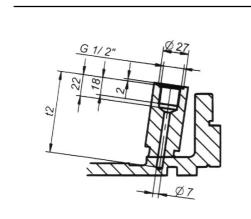
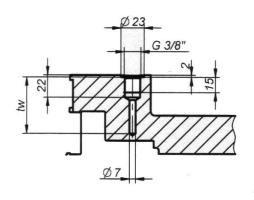
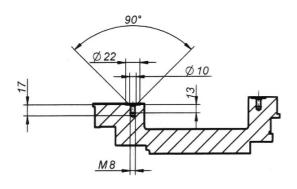
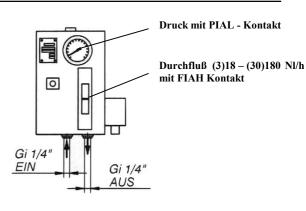


Abb. 3 Heizanschlüsse für Dampf und andere Wärmeträger

MPCH_{DryRun}

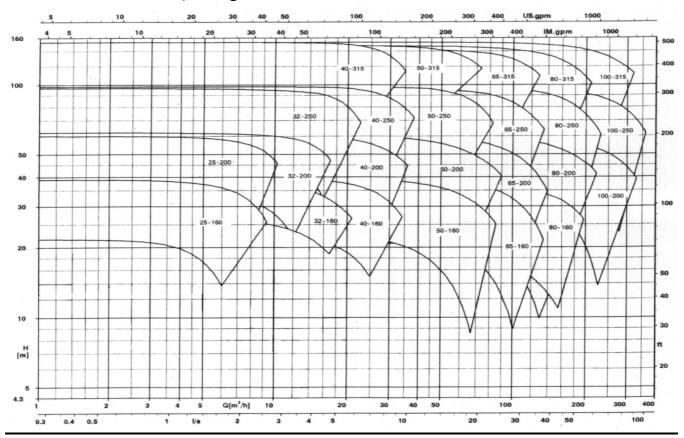





Abb. 4: Aufstellung ab Motorbaugröße 160 L und bei Produkttemperaturen über 120 °C

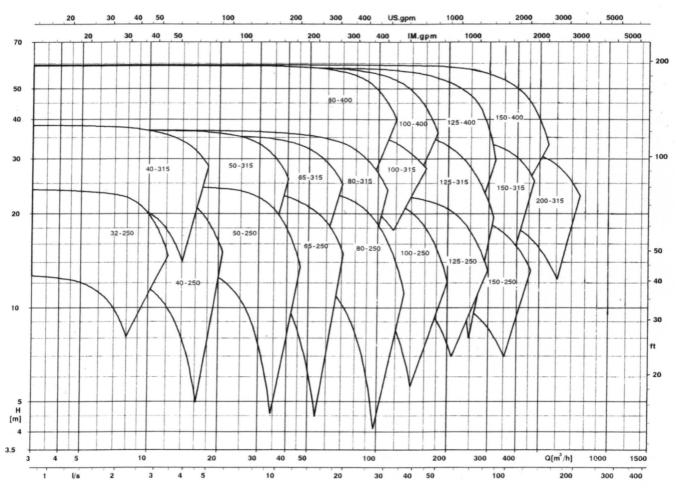

Temperaturmessung am Labyrinth (nur bei Produkt – Schmelzen)

Temperaturmessung an den Wälzlagern (Optional)

Anschluß zur Schwingungsmessung (SPM) an den Wälzlagern (Optional)



Sperrgassystem



Kennfeld MPCH DryRun, geschlossenes Laufrad n = 2900 1/min

Kennfeld MPCH DryRun, geschlossenes Laufrad n = 1450 1/min

